Results 1 to 10 of 10

Thread: Backwards diode

  1. #1
    Banned

    Join Date
    Jan 2017
    Location
    still above ground level
    Posts
    1,779
    Thanks
    5,562
    Thanked 1,964 Times in 714 Posts
    Rep Power
    0
    Reputation
    35657

    Default Backwards diode

    Researchers from Japan have developed a highly sensitive rectifying element in the form of a nano-wire backward diode, which can convert low-power microwaves into electricity. The research was carried out by leading communication technology company, Fujitsu, in partnership with the Japan Science and Technology Agency (JST), and the Tokyo Metropolitan University.

    Through JST's Strategic Basic Research Programs, the technology was developed by researchers led by Kenichi Kawaguchi of Fujitsu Limited and Professor Michihiko Suhara of the Tokyo Metropolitan University. The new technology can generate electricity from ambient radio waves, such as those emitted from mobile phone base stations.

    To facilitate the commencement of a true IoT era, energy harvesting from environmental radio waves is receiving attention as a means for building sensor networks that do not require batteries. Conventional rectifying elements, however, due to their low-voltage rectification characteristics and element sizes, had difficulties in converting low-power microwaves that are weaker than microwatts (μW), which account for many of the ambient radio waves, to electricity. There was a need, therefore, for a highly sensitive diode.
    This research group succeeded in forming a backward diode that possesses excellent rectification characteristics even within low voltage ranges in a nanowire that has been miniaturized to a width of about one-thousandth the width of a strand of hair. The newly-developed nanowire backward diode achieved a level of sensitivity more than 10 times higher than conventional Schottky barrier diodes.

    With this technology, microwaves with a power level of 100 nanowatts (nW) can be converted to electricity. Going forward, as the research group optimizes the design of the diode and the radio wave-collecting antenna while adding power control for constant voltage, there are high expectations for the realization of energy harvesting from environmental radio waves. The results of this research were announced on September 26, 2019, at the European Solid-State Device Research Conference (ESSDERC), an international conference being held in Krakow, Poland.



    These results were generated under the following program, research fields, and research area.Team-oriented Research (CREST), Strategic Basic Research Programs:

    Research Field: Scientific Innovation for Energy Harvesting Technology Using Minute Sources of Energy
    Research Supervisor: Kenji Taniguchi, Professor Emeritus, Osaka University / Deputy Research Supervisor: Hiroyuki Akinaga, Principal Research Manager, Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology(AIST)
    Title of Research Area: Research And Development Of Ambient RF Energy-Harvesting Devices Using Semiconductor Nanowires
    Research Director: Kenichi Kawaguchi (Deputy General Manager, Network Product Business Unit, Wireless System Dept, Fujitsu Limited) / Research period: October 2016 - March 2020
    In this field, JST aims to create innovative basic technologies that convert the unused and minute energy from heat, light, vibrations, radio waves, and living organisms existent in various environments into electricity (energy harvesting) for the purpose of use in sensors, information processing devices, and other devices. In the above research topic, a highly sensitive backward diode using tunneling current as the operating principle was made smaller in capacity, through submicron-sized, minute semiconductor nanowires.

    This enables the creation of receiving devices with dramatically improved sensitivity. Also, by embedding optimized power conversion circuitry into the nanowire backward diode, the research group will conduct proof of principle testing on the power conversion of low-power ambient radio waves.

    Research Background and Circumstances

    In preparation for the commencement of the true IoT era, energy harvesting technologies, which transform the minute sources of energy in the surrounding environment into electricity, have come under the spotlight in recent years as means for creating sensor networks that function without batteries. One such example reuses as electricity the low-power radio waves (microwaves), ubiquitous in open space, that are emitted from mobile phone base stations, for use in communications. Equipment used in generating electricity from ambient radio waves consists of a radio wave power generating element, which includes an antenna for collecting radio waves and a rectifying element (diode) that rectifies the radio waves (Figure 1).

    The responsiveness (sensitivity) of a diode to microwaves largely depends on the steepness of rectification characteristics and on diode size (capacity). Generally, Schottky barrier diodes, which utilize the rectification occurring at the junction formed between a metal and a semiconductor, are used as the diodes for power conversion. Due to rectification characteristics becoming slow at extremely low voltages and the size of elements being larger than several micrometers (μm), however, sensitivity to low-power microwaves weaker than microwatts (μW) was insufficient, and it was difficult to convert ambient radio waves into electricity. This led to a demand for diodes with increased sensitivity.



    Research Details

    The researchers carried out development to create a diode with higher sensitivity (figure 2). Specifically, they shrunk the capacity of and miniaturized a backward diode that is capable of steep rectification operations with zero bias, as rectification occurs by joining two different types of semiconductors and current flows with a different principle (tunnel effect) than conventional Schottky barrier diodes.

    Conventional backward diodes were formed by processing the thin film of a layered compound semiconductor into a disk shape via etching. Nonetheless, because the materials are prone to damage under processing, it was difficult to finely process diodes to a submicron size and operate them.

    By adjusting the ratio (composition) of the constituent elements of the connected semiconductor materials and, at a minute level, the density of the added impurities, the researchers succeeded in growing crystals in nanocrystals with a diameter of 150nm comprised of n-type indium arsenide (n-InAs) and p-type gallium arsenide antimonide (p-GaAsSb) for a tunnel junction structure necessary for the characteristics of the backward diode.

    Moreover, in the process for implanting insulating material around the nanowire and the process for forming electrode film with metal on both end of the wire, a new technology was used for mounting that does not damage the nanowire. As a result, they were able to form a sub-micron sized diode, which was difficult to do with conventional miniaturization process technology for compound semiconductors. , and thereby succeeded, for the first time in the world, in developing a nanowire backward diode with over 10 times the sensitivity of conventional Schottky barrier diodes (Figure 3).

    In testing the new technology in the microwave frequency of 2.4 GHz, which is currently used in the 4G LTE and Wi-Fi communication line standards for mobile phones, the sensitivity was 700 kV/W, roughly 11 times that of the conventional Schottky barrier diode (with a sensitivity of 60 KV/W) (figure 4). Therefore, the technology can efficiently convert 100 nW-class low-power radio waves into electricity, enabling the conversion of microwaves emitted into the environment from mobile phone base stations in an area that is over 10 times greater than was previously possible (corresponding to 10% of the area in which mobile phone communications are possible). This has led to expectations that it can be used as a source of power for sensors (figure 5).



    Future Plans

    In the future, it is expected that the newly-developed nanowire backward diode will be applied in using plentiful ambient radio wave energy in 5G communications, serving as a stable power source of sensors and contributing to battery-free sensors used to monitor infrastructure such as constructions and buildings.

    Going forward, the research group will further increase the sensitivity of the diode, optimize the diode-integrated antenna, and add power control for voltage consistency, aiming to realize a technology that can generate power anywhere using ambient radio waves.

    Published Paper: Highly Sensitive p-GaAsSb/n-InAs Nanowire Backward Diodes for Low-Power Microwaves

    Supplementary Note: The nanowire backward diode was prototyped at the Device & Materials Research Center (in Atsugi, Kanagawa prefecture) of Fujitsu Laboratories Ltd.

  2. The Following 5 Users Say Thank You to hinekadon For This Useful Post:

    ammlione (20-10-19),fromaron (14-10-19),kolithawick (15-10-19),tristen (16-10-19),Uncle Fester (15-10-19)



Look Here ->
  • #2
    LSemmens
    lsemmens's Avatar
    Join Date
    Dec 2011
    Location
    Rural South OZ
    Posts
    10,585
    Thanks
    11,867
    Thanked 7,061 Times in 3,338 Posts
    Rep Power
    3153
    Reputation
    132592

    Default

    Who knows, one day, maybe, we'll be able to "harvest" electricery from the ether and do away with those ugly power poles, solar panels, gensets and wind farms.......[/wry comment]
    I'm out of my mind, but feel free to leave a message...

  • The Following User Says Thank You to lsemmens For This Useful Post:

    hinekadon (15-10-19)

  • #3
    Senior Member
    trash's Avatar
    Join Date
    Jan 2008
    Location
    Tamworth
    Posts
    4,088
    Thanks
    148
    Thanked 3,229 Times in 1,451 Posts
    Rep Power
    1287
    Reputation
    47674

    Default

    Oh look, inverse square law !
    Yes I am an agent of Satan, but my duties are largely ceremonial.

  • The Following 4 Users Say Thank You to trash For This Useful Post:

    ammlione (20-10-19),hinekadon (15-10-19),RFI-EMI-GUY (27-06-20),Skepticist (15-10-19)

  • #4
    Premium Member
    Skepticist's Avatar
    Join Date
    Apr 2009
    Posts
    1,139
    Thanks
    714
    Thanked 670 Times in 525 Posts
    Rep Power
    475
    Reputation
    12780

    Default

    Sounds like an improvement on the Gunn diode which was invented in the 60's. I made a microwave leakage detector using one of them (Gunn) over 30 years ago and it still works fine over a broad range of frequencies.

  • #5
    Banned

    Join Date
    Jan 2017
    Location
    still above ground level
    Posts
    1,779
    Thanks
    5,562
    Thanked 1,964 Times in 714 Posts
    Rep Power
    0
    Reputation
    35657

    Default

    They are not like a gunn as such, as the rising voltage is up to a very small forward direction then turns on and remains flat there are some graphics on " everything rf latest publication " I could reproduce these diagrams , they are interesting as the finger contact area of a normal diode is quite a big percentage of the substrate where as these are very small and a lot of them

  • The Following User Says Thank You to hinekadon For This Useful Post:

    Skepticist (15-10-19)

  • #6
    Senior Member
    trash's Avatar
    Join Date
    Jan 2008
    Location
    Tamworth
    Posts
    4,088
    Thanks
    148
    Thanked 3,229 Times in 1,451 Posts
    Rep Power
    1287
    Reputation
    47674

    Default

    Quote Originally Posted by Skepticist View Post
    Sounds like an improvement on the Gunn diode which was invented in the 60's. I made a microwave leakage detector using one of them (Gunn) over 30 years ago and it still works fine over a broad range of frequencies.
    I think you're mistaken. A Gunn diode is similar to a Tunnel Diode.
    The diode you're thinking of that is/was used in microwave oven leak detectors is a Schottky Barrier Diode or a Hot carrier diode.
    Jaycar still sell them.

    Gunn Diodes are used in microwave motion detectors like those above shopping center automatic doors and radar detectors.
    As it happens, a Schottky Mixer Diode is used as the receive front end in the same devices.
    Yes I am an agent of Satan, but my duties are largely ceremonial.

  • #7
    Senior Member
    Uncle Fester's Avatar
    Join Date
    Jan 2008
    Location
    Commonly found in a pantry or the bottom of a fridge, searching for grains, fermented or distilled
    Posts
    6,405
    Thanks
    2,289
    Thanked 4,414 Times in 2,517 Posts
    Rep Power
    2046
    Reputation
    81778

    Default

    Quote Originally Posted by trash View Post
    I think you're mistaken. A Gunn diode is similar to a Tunnel Diode.
    The diode you're thinking of that is/was used in microwave oven leak detectors is a Schottky Barrier Diode or a Hot carrier diode.
    Jaycar still sell them.

    Gunn Diodes are used in microwave motion detectors like those above shopping center automatic doors and radar detectors.
    As it happens, a Schottky Mixer Diode is used as the receive front end in the same devices.

    I would hope Jaycar still sells them, you won't find a switch mode power supply without them these days as well as everything else that requires fast switching and low fwd voltage. I don't use standard diodes in any of my designs anymore unless I deliberately need a higher fwd voltage.

    None of the diodes mentioned above have much to do with the OP although tunnel diodes are actually backwards diodes too.
    Update: A deletion of features that work well and ain't broke but are deemed outdated in order to add things that are up to date and broken.
    Compatibility: A word soon to be deleted from our dictionaries as it is outdated.
    Humans: Entities that are not only outdated but broken... AI-self-learning-update-error...terminate...terminate...

  • #8
    Premium Member
    Skepticist's Avatar
    Join Date
    Apr 2009
    Posts
    1,139
    Thanks
    714
    Thanked 670 Times in 525 Posts
    Rep Power
    475
    Reputation
    12780

    Default

    Now you have me doubting my memory but I was fairly certain it is a Gunn diode. The circuit (microwave leakage detector) was from a magazine (probably EA or ETI) way back in the 80s and I purchased the diode at either Dick Smith or Jaycar. It's a small glass case like a 1N4148 and looking at it now I can't make out the print on the case without removing it - not really keen on disturbing it as it's served me well all this time finding 'hot spots' around roughly handled microwaves.

    Maybe it is a small schottky after all

  • #9
    Banned

    Join Date
    Jan 2017
    Location
    still above ground level
    Posts
    1,779
    Thanks
    5,562
    Thanked 1,964 Times in 714 Posts
    Rep Power
    0
    Reputation
    35657

    Default

    Has anyone read the acticle from everything Rf ?it explains the discovery completely

  • #10
    Senior Member
    trash's Avatar
    Join Date
    Jan 2008
    Location
    Tamworth
    Posts
    4,088
    Thanks
    148
    Thanked 3,229 Times in 1,451 Posts
    Rep Power
    1287
    Reputation
    47674

    Default

    Quote Originally Posted by Skepticist View Post
    Now you have me doubting my memory but I was fairly certain it is a Gunn diode. The circuit (microwave leakage detector) was from a magazine (probably EA or ETI) way back in the 80s ...

    Maybe it is a small schottky after all
    The moment you said ETI, that confirmed it as a schottky. I have built the same circuit and I still have it floating around in one of the boxes here.
    I also have the circuit in front of me. ETI project 724. I can't transfer it across from the phone camera at the moment, so I can post the component list interim.

    R1 - 330R
    R2 - 15R
    R3 - 330R
    C1 - 220pf
    D1 - HP 5082-2800 Shottky Hot Carrier Diode.
    PB1 - Momentary Push Button
    M1 - 250uA FSD meter
    L1,L2 - etched onto PCB
    Yes I am an agent of Satan, but my duties are largely ceremonial.

  • The Following User Says Thank You to trash For This Useful Post:

    Skepticist (16-10-19)

  • Bookmarks

    Posting Permissions

    • You may not post new threads
    • You may not post replies
    • You may not post attachments
    • You may not edit your posts
    •